Uncertainty Estimation via Response Scaling for Pseudo-Mask Noise Mitigation in Weakly-Supervised Semantic Segmentation

نویسندگان

چکیده

Weakly-Supervised Semantic Segmentation (WSSS) segments objects without heavy burden of dense annotation. While as a price, generated pseudo-masks exist obvious noisy pixels, which result in sub-optimal segmentation models trained over these pseudo-masks. But rare studies notice or work on this problem, even pixels are inevitable after their improvements pseudo-mask. So we try to improve WSSS the aspect noise mitigation. And observe that many high confidences, especially when response range is too wide narrow, presenting an uncertain status. Thus, paper, simulate variations by scaling prediction map multiple times for uncertainty estimation. The then used weight loss mitigate supervision signals. We call method URN, abbreviated from Uncertainty estimation via Response Noise Experiments validate benefits and our achieves state-of-the-art results at 71.2% 41.5% PASCAL VOC 2012 MS COCO 2014 respectively, extra like saliency detection. Code available https://github.com/XMed-Lab/URN.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Supervised RBM for Semantic Segmentation

In this paper, we propose a weakly supervised Restricted Boltzmann Machines (WRBM) approach to deal with the task of semantic segmentation with only image-level labels available. In WRBM, its hidden nodes are divided into multiple blocks, and each block corresponds to a specific label. Accordingly, semantic segmentation can be directly modeled by learning the mapping from visible layer to the h...

متن کامل

Sparse Reconstruction for Weakly Supervised Semantic Segmentation

We propose a novel approach to semantic segmentation using weakly supervised labels. In traditional fully supervised methods, superpixel labels are available for training; however, it is not easy to obtain enough labeled superpixels to learn a satisfying model for semantic segmentation. By contrast, only image-level labels are necessary in weakly supervised methods, which makes them more practi...

متن کامل

Weakly-Supervised Semantic Segmentation Using Motion Cues

Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level annotations have become the new state of the art for the semantic segmentation task. While there have been recent attempts to learn FCNNs from image-level weak annotations, they need additional constraints, such as the size of an object, to obtain reasonable performance. To address this issue...

متن کامل

Weakly Supervised Semantic Labelling and Instance Segmentation

Semantic labelling and instance segmentation are two tasks that require particularly costly annotations. Starting from weak supervision in the form of bounding box detection annotations, we propose to recursively train a convnet such that outputs are improved after each iteration. We explore which aspects affect the recursive training, and which is the most suitable box-guided segmentation to u...

متن کامل

Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation

Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using image tags. Without additional information, this leads to poor localization accuracy. This problem, however, was alleviated by making use of ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2022

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v36i2.20034